Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37514077

RESUMO

The synthesis and characterization of two new water soluble 2,6-bis(imidazolylmethyl)-4-methylphenoxy-containing perylenediimides, PDI-1 and PDI-2, are described. These compounds demonstrate a high fluorescence quantum yield in water and were investigated as potential photosensitizers for generating reactive oxygen species with applications in anticancer activities. The HeLa cell line (VPH18) was used to evaluate their efficacy. Fluorescence microscopy was employed to confirm the successful internalization of PDI-1 and PDI-2, while confocal microscopy revealed the specific locations of both PDIs within the lysosomes and mitochondria. In vitro studies were conducted to evaluate the anticancer activity of PDI-1 and PDI-2. Remarkably, these photosensitizers demonstrated a significant ability to selectively eliminate cancer cells when exposed to a specific light wavelength. The water solubility, high fluorescence quantum yield, and selective cytotoxicity of these PDIs toward cancer cells highlight their potential as effective agents for targeted photodynamic therapy. In conclusion, the findings presented here provide a strong foundation for the future exploration and optimization of PDI-1 and PDI-2 as effective photosensitizers in photodynamic therapy, potentially leading to improved treatment strategies for cancer patients.

2.
Nanoscale ; 15(30): 12506-12517, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37282587

RESUMO

Many systems for controlled drug release have been developed using different types of nanoparticles modified with azobenzene moieties. In these systems, drug release is often triggered by UV irradiation (either direct or using a near-infrared photosensitizer). These drug delivery systems often face challenges to their use, such as their lack of stability in physiological environments and concerns about their toxicity and bioavailability, that have hindered their translation from pre-clinical studies to clinical trials. Here, we propose a conceptual change by shifting photoswitching activity from the vehicle (nanoparticle) to the load (drug). In this "ship in a bottle" concept, the molecule to be delivered is trapped within a porous nanoparticle and its release is accomplished through a photoisomerization process. Using molecular dynamics, we designed and synthesized a photoswitchable prodrug of the antitumor drug camptothecin that contains an azobenzene functionality, and we have prepared porous silica nanoparticles with pore diameters designed to limit its release when in the trans form. Molecular modelling was used to show that the cis isomer was smaller and better able to pass through the pores than the trans isomer, which was confirmed by stochastic optical reconstruction microscopy (STORM). Thus, prodrug-loaded nanoparticles were prepared by loading the cis prodrug and then using UV irradiation to convert cis to trans isomers, trapping them, within the pores. Release of the prodrug was then accomplished by using a different UV wavelength to convert trans isomers back to cis. In this way, prodrug encapsulation and release could be achieved "on demand" through controlled cis-trans photoisomerization, which allowed the prodrug to be delivered safely and its release to be triggered precisely at the region of interest. Finally, the intracellular release and cytotoxic activity of this novel drug delivery system has been validated in several human cell lines, confirming the ability of this system to accurately control the release of the camptothecin prodrug.


Assuntos
Antineoplásicos , Nanopartículas , Pró-Fármacos , Humanos , Camptotecina/farmacologia , Preparações de Ação Retardada/farmacologia , Sistemas de Liberação de Medicamentos , Porosidade , Pró-Fármacos/farmacologia
3.
Macromol Rapid Commun ; 43(12): e2100733, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35338785

RESUMO

Drops sliding down an adaptive surface lead to changes of the dynamic contact angles. Two adaptation processes play a role: 1) the adaptation of the surface upon bringing it into contact to the drop (wetting) and 2) the adaptation of the surface after the drop passed (dewetting). In order to study both processes, the authors investigate samples made from random styrene (PS)/acrylic acid (PAA) copolymers, which are exposed to water. Sum-frequency generation spectroscopy and tilted-plate measurements indicate that during wetting, the PS segments displace from the interface, while PAA segments are enriched. This structural adaptation of the PS/PAA random copolymer to water remains after dewetting. Annealing the adapted polymer induces reorientation of the PS segments to the surface.


Assuntos
Acrilatos , Água , Acrilatos/química , Polímeros/química , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...